DRAINAGE REPORT HÖKÜLI'A SHORELINE PARK PUBLIC ACCESS PARKING

North Kona, Hawai'i Tax Map Key: 8-1-34: 27

This work was prepared by me or under my supervision. Expiration date of the License: April 30, 2018 Date: June 23, 2016

Prepared for: 1250 Oceanside, LLC 2260 Douglas Boulevard, Suite 240 Roseville, CA 95661

Prepared by: BELT COLLINS HAWAII LLC 2153 North King Street, Suite 200 Honolulu, Hawai'i 96819

Job No. 2014.50.0300

1 GENERAL PROJECT SITE DESCRIPTION

The Hōkūli'a Shoreline Park Public Access Parking project is located within the Hōkūli'a development, west of Hawai'i Loa Drive, at Tax Map Key (TMK) 8-1-34: 27. See Figure 1 – Project Location Map. The project site is owned by 1250 Oceanside, LLC. The mauka (south-east) half of the property has been partially graded. An archaeological preservation site is located on the makai (north-west) half of the property. The proposed project, located on the mauka (south-east) half of the site, includes public parking, a restroom facility with showers and signage.

2 STUDY METHODOLOGY

The County of Hawai'i, Department of Public Works' Storm Drainage Standards, hereinafter referred to as the Standards, dated October 1970 was used for the analysis of the storm drainage. Since the project area is less than 100 acres, the 10-year-recurrence-interval flows for the drainage are calculated by using the Rational Method, as outlined in the Standards.

A rainfall intensity of 1.8 inches per hour was selected for the design storm from Plate 1 of the Standards. Runoff coefficients of 0.32 and 0.66 were taken from Table 1 of the Standards for the existing and developed conditions, respectively.

3 EXISTING DRAINAGE

The existing property is approximately 1.494 acres. The mauka (south-east) half of the site was previously graded, and vegetation has naturally grown back on the site. The proposed project will be located on approximately 0.59 acres of the mauka (south-east) half of the site. The makai (north-west) portion of the site is an archaeological preservation area. The site slopes from mauka (south-east) to makai (north-west). Rainfall runoff sheet flows from mauka (south-east) to makai (north-west) until it gets to the preservation site, where the runoff sheet flows north and south around the archaeological preservation site and continues to flow in the makai (north-west) direction.

The project site is divided into two drainage areas designated as Basins 1 and 2, as shown in Figure 2 –Existing Drainage Plan. Basin 1 encompasses approximately 0.47 acres, generating approximately 0.50 cubic feet per second (cfs) of runoff with a runoff volume of approximately 451 cubic feet (cf). Basin 2 encompasses approximately 0.12 acres, generating approximately 0.15 cfs of runoff with a volume of approximately 81 cf. The total runoff is approximately 0.65 cfs with a total volume of approximately 531 cf. See Table 1: Existing Condition Runoff Calculations and Table 5: Runoff Volume at the end of this report.

4 DEVELOPED DRAINAGE

The proposed improvements located on the mauka (south-east) half of the site will include a new restroom facility building, asphaltic concrete paved driveway and parking lot, Portland cement concrete paved walkways, and signage. Areas around the parking lot and building will either be landscaped or renaturalized with lava. The developed area of the site is divided into two drainage areas designated as Basins 1 and 2. Rainfall runoff will generally follow the same drainage patterns as the existing conditions, as shown in Figure 3 – Developed Drainage Plan.

Drainage Basin 1 encompasses 0.41 acres, generating approximately 1.26 cfs of runoff with a volume of approximately 377 cf. Drainage Basin 2 encompasses 0.18 acres, generating approximately 0.54 cfs of runoff with a volume of approximately 179 cf. The total runoff is approximately 1.80 cfs with a volume of approximately 556 cf. See Table 3: Developed Condition Runoff Calculations at the end of this report.

One (1) seepage well will be constructed in each Basin to capture and mitigate the increased discharge rate and volume of rainfall runoff. The seepage wells consist of 8-foot diameter perforated concrete rings with a total depth of approximately 7-feet, and a storage volume of approximately 301 cf each. The seepage well in Basin 1 will contain approximately 80% of the runoff, while the seepage well in Basin 2 has the capacity to store the entire volume of runoff from the design storm. Lava sumps, appropriately size, can also be used as an alternate to the seepage wells. The net effect will be a reduction in runoff from the project site.

5 SUMMARY

Under existing conditions, approximately 0.65 cfs of runoff flows from the project site, with a volume of approximately 531 cf. With the site improvements, approximately 1.80 cfs of runoff will be generated on the site, with a volume of approximately 556 cf. Two (2) proposed seepage wells with a total storage volume of 602 cf are designed to capture the majority of the storm runoff from the improvements. There should be no increase in runoff flow rate or volume discharging from the site.

REFERENCES:

"Storm Drainage Standard", County of Hawaii, Department of Public Works, October 1970.

Thu, 23 Jun 2016 - 8 08am M Vstukiaki2014500300 1250 Oceanside04 Graphics/CADSheets Shorelare Park/Figure Drainage Report/Figure 1 - Project I

דאט, 23 Jun 2016 - 6 D9am א עון עון 23 Jun 2016 - 6 D9am א עון עון 23 Jun 2016 - 2020 1250 Oceanede/04 Graph באנארבאנאנג Sibration Parkleyure Dramage ReportFIGUE/2 לא

-/3014500300 1250 htt 2016 - 8-109m

PROJECT:Hōkūli'a Shoreline ParkJOB NO:2014.50.0300CLIENT:1250 Oceanside, LLCDATE:23-Jun-16SUBJECT:Drainage CalculationsBY:A. KatoFILE:M:\Hokulia\2014500300 1250 Oceanside\05 Basis of Design\Shoreline Park

HOKULIA SHORELINE PARK PUBLIC ACCESS PARKING TABLE 1: EXISTING CONDITION RUNOFF CALCULATIONS								
	Tributary		Runoff	Rainfall				
Basin	Area	Tc	Coefficient	Intensity	Discharge			
	(Acres)	(Minutes)	С	(in/hr)	(cfs)			
1	0.47	15.0	0.32	3.33	0.50			
2	0.12	9.0	0.32	3.89	0.15			
Total	0.59				0.65			

NOTES:

- 1. The Time of Concentration (Tc) is determined from Plate 3 of the County of Hawaii Storm Drainage Standards.
- 2. The Runoff Coefficient is from Table 1 of the County of Hawaii Storm Drainage Standards.
- 3. The Rainfall Intensity is based on a 1.8 inch rainfall for a 10-year, 1-hour storm from Plate 1.

HOKULIA SHORELINE PARK PUBLIC ACCESS PARKING									
TABLE 2: EXISTING DRAINAGE TIME OF CONCENTRATION, TC									
Basin	Length	Beg. Elev	Tc						
Basin	(ft)	(ft)	(ft)	(%)	(min)				
1	215	26.5	21.9	2.1%	15.0				
2	87	26	22	4.6%	9.0				

NOTES:

- 1. The Time of Concentration (Tc) is determined from Plate 3 of the County of Hawaii Storm Drainage Standards.
- 2. Ground surface is good vegetal cover.

PROJECT:Hökūli'a Shoreline ParkJOB NO:2014.50.0300CLIENT:1250 Oceanside, LLCDATE:23-Jun-16SUBJECT:Drainage CalculationsBY:A. KatoFILE:M:\Hokulia\2014500300 1250 Oceanside\05 Basis of Design\Shoreline Park

HOKULIA SHORELINE PARK PUBLIC ACCESS PARKING TABLE 3: DEVELOPED CONDITION RUNOFF CALCULATIONS									
	Tributary Runoff Rainfall								
Basin	Basin Area		Coefficient	Intensity	Discharge				
	(Acres)	(Minutes)	С	(in/hr)	(cfs)				
1	0.41	5.0	0.66	4.65	1.26				
2	0.18								
Total	0.59				1.80				

NOTES:

1. The Time of Concentration (Tc) is determined from Plate 3 of the County of Hawaii Storm Drainage Standards.

2. The Runoff Coefficient is from Table 1 of the County of Hawaii Storm Drainage Standards.

3. The Rainfall Intensity is based on a 1.8 inch rainfall for a 10-year, 1-hour storm from Plate 1.

HOKULIA GOLF MAINTENANCE FACILITY MASS GRADING TABLE 4: DEVELOPED DRAINAGE TIME OF CONCENTRATION, Tc									
	Length Ground Beg Eley End Eley Slope To								
Basin	(ft)	Surface	(ft)	(ft)	(%)	(min)			
1	224	AC/Lava	26.5	21.9	2.1%	5.0			
Total	224					5.0			
2	75	Lava	26	22	5.3%	5.5			
Total	75					5.5			

NOTES:

1. The Time of Concentration (Tc) is determined from Plate 3 of the County of Hawaii Storm Drainage Standards.

PROJECT:Höküli'a Shoreline ParkJOB NO:2014.50.0300CLIENT:1250 Oceanside, LLCDATE:23-Jun-16SUBJECT:Drainage CalculationsBY:A. KatoFILE:M:\Hokulia\2014500300 1250 Oceanside\05 Basis of Design\Shoreline Pi

HOKULIA SHORELINE PARK PUBLIC ACCESS PARKING										
TABLE 5: RUNOFF VOLUME										
			Runoff	Volume						
Basin	Discharge	Tc	Volume	Increase						
	(cfs)	(Minutes)	(cf)	(cf)						
Existing 1	0.50	15.0	451							
Existing 2	0.15	9.0	81							
Subtotal	0.65		531							
Developed 1	1.26	5.0	377	-73						
Developed 2	0.54	5.5	179	98						
Subtotal	1.80		556							

NOTES:

 Volume of Runoff based on triangular unit hydrograph, where Peak Discharge occurs at Tc. Total Time of storm = 2 x Tc

Volume = 1/2 (base) (height) = 1/2 (2 x Tc) (Discharge) = (Tc) x (Discharge)

 8' Diameter Seepage Wells , Ring heights H = 6' Storage Volume = [(pi x D**2)/4] x H = [(pi x 8**2)/4] x 6 = 301 cf

Seepage Wells to store the increase in runoff volume and mitigate increase in discharge rate. Install One 8' Diameter Seepage Well in each Basin.

Plate 1

15

Table 1

GUIDE FOR THE DETERMINATION OF RUNOFF COEFFICIENTS FOR BUILT-UP AREAS*

WATERSHED CHARACTERISTICS	EXTREME	нісн	MODERATE	LOW				
INFILTRATION	NEGLIGIBLE 0.20	SLOW 0.14	MEDIUM 0.07	HIGH 0.0				
RELIEF	STEEP (> 25%) 0.08	HILLY (15-25%) 0.06	ROLLING (5-15%) 0.03	FLAT (0-5%) 0.0				
VEGETAL COVER	NONE 0.07	POOR (< 10%) 0.05	GOOD (10 - 50%) 0.03	HÌGH (50 – 90%) 0.0				
DEVELOPMENT TYPE	INDUSTRIAL & BUSINESS 0.55	HOTEL – APARTMENT 0.45	RESIDENTIAL 0.40	AGRICULTURAL 0.15				

*NOTE: The design coefficient "c" must result from a total of the values for all four watershed characteristics of the site.

Table 2

APPROXIMATE AVERAGE VELOCITIES OF RUNOFF FOR CALCULATING TIME OF CONCENTRATION

国际总管理总统中国和合大

TYPE OF FLOW			FPS FOR	
OVERLAND FLOW:	0-3%	4-7%	8-11%	12-15%
Woodlands	1.0	2.0	3.0	3.5
Pastures	1.5	3.0	4.0	4.5
Cultivated	2.0	4.0	5.0	6.0
Pavements	5.0	12.0	15.0	18.0

OPEN CHANNEL FLOW:

Improved Channels	Determine	Velocity by	Manning's	Formula
Natural Channel* (not well defined)	1.0	3.0	5.0	8.0

*These values vary with the channel size and other conditions so that the ones given are the averages of a wide range. Whereever possible, more accurate determinations should be made for particular conditions by Manning's formula.

Table 1

GUIDE FOR THE DETERMINATION OF RUNOFF COEFFICIENTS Ciper Ki Emler - Durid 4/24/04 FOR BUILT-UP ARE AS*

WATERSHED CHARACTERISTICS	EXTREME	EXTREME HIGH MODER		LOW					
INFILTRATION	NEGLIGIBLE 0.20	SLOW 0.14	MEDIUM 0.07	HIGH 0.0					
RELIEF	STEEP (> 25%) 0.08	HILLY (15-25%) 0.06	ROLLING (5-15%) 0.03	FLAT (0-5%) 0.0					
VEGETAL COVER	NONE 0.07	POOR (< IO%) 0.05	GOOD (10 - 50%) 0.03	HÌGH (50 - 90%) 0.0					
DEVELOPMENT TYPE	INDUSTRIAL & BUSINESS 0.55	HOTEL – APARTMENT 0.45	RESIDENTIAL 0.40	AGRICULTURAL 0.15					

*NOTE: The design coefficient "c" must result from a total of the values for all four watershed characteristics of the site.

Table 2

APPROXIMATE AVERAGE VELOCITIES OF RUNOFF FOR CALCULATING TIME OF CONCENTRATION

PROPERTY PROPERTY

TYPE OF FLOW			FPS FOR		
OVERLAND FLOW:	0-3%	47%	8-11%	12-15%	
Woodlands	1.0	2.0	3.0	3.5	
Pastures	1.5	3.0	4.0	4.5	
Cultivated	2,0	4.0	5.0	6.0	
Pavements	5.0	12.0	15.0	18.0	
OPEN CHANNEL FLOW:					
Improved Channels	Determin	e Velocity	y by Mannin	g's Formula	
Natural Channel* (not well defined)	1.0	3.0	5.0	8.0	
Cultivated Pavements OPEN CHANNEL FLOW: Improved Channels Natural Channel* (not well defined) *These values vary so that the ones given ever possible, more ac particular conditions by	are the aver curate deter	rages of o mination	a wide ran	ge. Where-	

proved Channels	Determine	Velocity by	Manning's	Formula
ural Channel* t well defined)	1.0	3.0	5.0	8.0

POCHANNO CONTRACTOR

Table 1											
Höküli'a Shoreline Park Public Access Parking											
*Rainfall Intensity for Indicated Tc											
Tc	Ι	Tc	I	Tc	I	Tc	1	Tc	1	Tc	1
5.0	4.65	10.0	3.70	15.0	3.33	20.0	2.96	25.0	2.74	30.0	2.51
5.1	4.63	10.1	3.69	15.1	3.32	20.1	2.96	25.1	2.73	40.0	2.27
5.2	4.61	10.2	3.69	15.2	3.32	20.2	2.95	25.2	2.73	60.0	1.79
5.3	4.59	10.3	3.68	15.3	3.31	20.3	2.95	25.3	2.72		
5.4	4.57	10.4	3.67	15.4	3.30	20.4	2.94	25.4	2.72		
5.5	4.56	10.5	3.66	15.5	3.29	20.5	2.94	25.5	2.71		
5.6	4.54	10.6	3.66	15.6	3.29	20.6	2.93	25.6	2.71		
5.7	4.52	10.7	3.65	15.7	3.28	20.7	2.93	25.7	2.70		
5.8	4.50	10.8	3.64	15.8	3.27	20.8	2.92	25.8	2.70		
5.9	4.48	10.9	3.63	15.9	3.26	20.9	2.92	25.9	2.69		
6.0	4.46	11.0	3.63	16.0	3.26	21.0	2.92	26.0	2.69		
6.1	4.44	11.1	3.62	16.1	3.25	21.1	2.91	26.1	2.69		
6.2	4.42	11.2	3.61	16.2	3.24	21.2	2.91	26.2	2.68		
6.3	4.40	11.3	3.60	16.3	3.23	21.3	2.90	26.3	2.68		
6.4	4.38	11.4	3.60	16.4	3.23	21.4	2.90	26.4	2.67		
6.5	4.37	11.5	3.59	16.5	3.22	21.5	2.89	26.5	2.67		
6.6	4.35	11.6	3.58	16.6	3.21	21.6	2.89	26.6	2.66		
6.7	4.33	11.7	3.57	16.7	3.20	21.7	2.88	26.7	2.66		
6.8	4.31	11.8	3.57	16.8	3.20	21.8	2.88	26.8	2.65		
6.9	4.29	11.9	3.56	16.9	3.19	21.9	2.87	26.9	2.65		
7.0	4.27	12.0	3.55	17.0	3.18	22.0	2.87	27.0	2.65		
7.1	4.25	12.1	3.54	17.1	3.17	22.1	2.87	27.1	2.64		
7.2	4.23	12.2	3.54	17.2	3.17	22.2	2.86	27.2	2.64		
7.3	4.21	12.3	3.53	17.3	3.16	22.3	2.86	27.3	2.63		
7.4	4.19	12.4	3.52	17.4	3.15	22.4	2.85	27.4	2.63		
7.5	4.18	12.5	3.52	17.5	3.15	22.5	2.85	27.5	2.62		
7.6	4.16	12.6	3.51	17.6	3.14	22.6	2.84	27.6	2.62		
7.7	4.14	12.7	3.50	17.7	3.13	22.7	2.84	27.7	2.61		
7.8	4.12	12.8	3.49	17.8	3.12	22.8	2.83	27.8	2.61		
7.9	4.10	12.9	3.49	17.9	3.12	22.9	2.83	27.9	2.60		
8.0	4.08	13.0	3.48	18.0	3.11	23.0	2.83	28.0	2.60		
8.1	4.06	13.1	3.47	18.1	3.10	23.1	2.82	28.1	2.60		
8.2	4.04	13.2	3.46	18.2	3.09	23.2	2.82	28.2	2.59		
8.3	4.02	13.3	3.46	18.3	3.09	23.3	2.81	28.3	2.59		
8.4	4.00	13.4	3.45	18.4	3.08	23.4	2.81	28.4	2.58		
8.5 8.6	3.99 3.97	13.5 13.6	3.44	18.5 18.6	3.07	23.5 23.6	2.80 2.80	28.5 28.6	2.58 2.57	<u> </u>	├
8.0	3.97	13.0	3.43	18.0	3.06	23.0	2.80	28.0	2.57		┠───┤
8.7	3.93	13.7	3.43	18.7	3.00	23.8	2.79	28.7	2.57		┠───┤
8.9	3.93	13.8	3.41	18.9	3.03	23.8	2.79	28.8	2.56		
8.9 9.0	3.89	13.9	3.41	18.9	3.04	23.9	2.78	28.9	2.56		
<u>9.0</u> 9.1	3.87	14.0	3.40	19.0	3.03	24.0	2.78	29.0	2.50		
9.1	3.85	14.1	3.39	19.1	3.03	24.1	2.78	29.1	2.55		
9.2	3.83	14.2	3.38	19.2	3.02	24.2	2.77	29.2	2.55		
9.4	3.81	14.4	3.37	19.3	3.00	24.3	2.76	29.3	2.54		╂───┤
9.5	3.79	14.5	3.37	19.4	3.00	24.4	2.76	29.5	2.54	<u> </u>	├ ──┤
9.6	3.78	14.6	3.36	19.5	2.99	24.5	2.75	29.5	2.53	<u> </u>	
9.7	3.76	14.7	3.35	19.7	2.99	24.7	2.75	29.7	2.53	<u> </u>	
9.8	3.74	14.8	3.34	19.8	2.98	24.8	2.74	29.8	2.52	<u> </u>	
9.9	3.72	14.9	3.34	19.9	2.97	24.9	2.74	29.9	2.52	<u> </u>	t
		om Plat				27.7		-7.7		L	L

Table 1

* Interpolate from Plate 4 graph, i = 1.8